High Quality, Scalable and Parallel Community Detection for Large Real Graphs

Arnau Prat-Pérez, David Dominguez-Sal, Josep-Lluis Larriba-Pey

To be published in WWW 2014

GraphTA 2014

A brief introduction

- Real networks are structured into modules called communities.
- Informally, communities are groups of nodes more highly connected between them than with the rest of the graph.
- Several applications:
 - Recommend users, products, sites, etc...
 - Find similar proteins.
 - Visualization of large data.
- However:
 - Non consensuated definition
 - Computationally expensive.

Goal

- Find algorithms with a strong focus on:
 - Quality
 - Scalability
 - Parallelism
- Scalable Comunity Detection (SCD) is our first proposal for scalable disjoint community detection algorithm for SMP machines.

Weighted Community Clustering (CIKM12)

- The Weighted Community Clustering (WCC) ranks the quality of a graph partition into disjoint communities
- Strongly based on triangles.
- Good structural indicators:
 - large internal edge density
 - small diameter
 - small conductance

Scalable Community Detection (SCD)

- WCC as heuristic.
- Transfers can be computed in parallel.
- We approximate the WCC using a proposed estimator.
- Algorithm's complexity: O(m · log n)

Some results

- 4-Core Xeon with 32GB of RAM.
- Quality: better than state of the art, using real graphs with ground truth communities.
- Scalability: faster than the fastest. Graphs with 1.8 Billions edges processed in just 4.3 hours.
- Parallelism: almost linear speed-up for large graphs.
- Verified quasi-linear complexity.

Summary

- Triangles allow us to find communities fast and reliably.
- We exploit the characteristics of current multicore microprocessors.
- Paper and code available at www.dama.upc.edu.